110 research outputs found

    Municipal wastewater treatment with pond technology : historical review and future outlook

    No full text
    Facing an unprecedented population growth, it is difficult to overstress the assets for wastewater treatment of waste stabilization ponds (WSPs), i.e. high removal efficiency, simplicity, and low cost, which have been recognized by numerous scientists and operators. However, stricter discharge standards, changes in wastewater compounds, high emissions of greenhouse gases, and elevated land prices have led to their replacements in many places. This review aims at delivering a comprehensive overview of the historical development and current state of WSPs, and providing further insights to deal with their limitations in the future. The 21st century is witnessing changes in the way of approaching conventional problems in pond technology, in which WSPs should no longer be considered as a low treatment technology. Advanced models and technologies have been integrated for better design, control, and management. The roles of algae, which have been crucial as solar-powered aeration, will continue being a key solution. Yet, the separation of suspended algae to avoid deterioration of the effluent remains a major challenge in WSPs while in the case of high algal rate pond, further research is needed to maximize algal growth yield, select proper strains, and optimize harvesting methods to put algal biomass production in practice. Significant gaps need to be filled in understanding mechanisms of greenhouse gas emission, climate change mitigation, pond ecosystem services, and the fate and toxicity of emerging contaminants. From these insights, adaptation strategies are developed to deal with new opportunities and future challenges

    Opportunities and challenges for the sustainability of lakes and reservoirs in relation to the sustainable development goals (SDGs)

    Get PDF
    Emerging global threats, such as biological invasions, climate change, land use intensification, and water depletion, endanger the sustainable future of lakes and reservoirs. To deal with these threats, a multidimensional view on the protection and exploitation of lakes and reservoirs is needed. The holistic approach needs to contain not just the development of economy and society but also take into account the negative impacts of this growth on the environment, from that, the balance between the three dimensions can be sustained to reach a sustainable future. As such, this paper provides a comprehensive review on future opportunities and challenges for the sustainable development of lakes and reservoirs via a critical analysis on their contribution to individual and subsets of the Sustainable Development Goals (SDGs). Currently, lakes and reservoirs are key freshwater resources. They play crucial roles in human societies for drinking water provision, food production (via fisheries, aquaculture, and the irrigation of agricultural lands), recreation, energy provision (via hydropower dams), wastewater treatment, and flood and drought control. Because of the (mostly) recent intensive exploitations, many lakes and reservoirs are severely deteriorated. In recent years, physical (habitat) degradation has become very important while eutrophication remains the main issue for many lakes and ponds worldwide. Besides constant threats from anthropogenic activities, such as urbanization, industry, aquaculture, and watercourse alterations, climate change and emerging contaminants, such as microplastics and antimicrobial resistance, can generate a global problem for the sustainability of lakes and reservoirs. In relation to the SDGs, the actions for achieving the sustainability of lakes and reservoirs have positive links with the SDGs related to environmental dimensions (Goals 6, 13, 14, and 15) as they are mutually reinforcing each other. On the other hand, these actions have direct potential conflicts with the SDGs related to social and economic dimensions (Goals 1, 2, 3 and 8). From these interlinkages, we propose 22 indicators that can be used by decision makers for monitoring and assessing the sustainable development of lakes and reservoirs

    Links and trade-offs between fisheries and environmental protection in relation to the sustainable development goals in Thailand

    Get PDF
    The fisheries sector significantly contributes to global food security, nutrition, and livelihood of people. Its importance for economic benefits, healthy diets, and nutrition, and achieving sustainable food systems is highlighted by several Sustainable Development Goals (SDGs), i.e., SDG 1 (No Poverty), SDG 2 (Zero Hunger), and SDG 14 (Life Below Water). However, due to unprecedented population levels, the contribution of the fisheries sector to fulfills these roles is challenging, particularly given additional concerns regarding environmental well-being and sustainability. From this perspective, this study aims to identify the links and trade-offs between the development of this sector and the environmental sustainability in Thailand via a critical analysis of their trends, current ecological impacts, and more importantly, their contributions to several individual SDGs. A time-series of Thailand's fisheries production from 1995 to 2015 indicates a recent reduction from around 3.0 million tons in 1995 to 1.5 million tons in 2015 of wild fish and shellfish from marine and freshwater habitats. The maximum sustainable yield of these species has been exceeded. Conversely, Thailand's aquaculture production has continued to grow over the last decade, resulting in a reduction of mangrove forest area, wild fish stocks, and water quality. While capture fisheries and aquaculture production significantly contribute to several SDG targets, there are potential trade-offs between their development and the achievement of SDGs within the planet dimension, i.e., SDG 6 (Clean Water and Sanitation), SDG 12 (Responsible Consumption and Production), SDG 13 (Climate Action), SDG 14, and SDG 15 (Life on Land). On the one hand, the mitigation of overfishing will be beneficial for the targets of SDG 14, leading to more sustainable resource management. On the other hand, it might cause a decrease in the volume of marine catches and economic and social profits. We conclude that the SDGs can serve as a framework for both policymakers and industrial workers to monitor and compromise on regulations that will optimize productivity in the context of sustainable development

    Aquaculture production and its environmental sustainability in Thailand : challenges and potential solutions

    Get PDF
    Though aquaculture plays an important role in providing foods and healthy diets, there are concerns regarding the environmental sustainability of prevailing practices. This study examines the trends and changes in fisheries originating from aquaculture production in Thailand and provides insights into such production’s environmental impacts and sustainability. Together with an extensive literature review, we investigated a time series of Thai aquaculture production data from 1995 to 2015. Overall, Thai aquaculture production has significantly increased during the last few decades and significantly contributed to socio-economic development. Estimates of total aquaculture production in Thailand have gradually grown from around 0.6 to 0.9 million tons over the last twenty years. Farmed shrimp is the main animal aquatic product, accounting for an estimated 40% of total yields of aquaculture production, closely followed by fish (38%) and mollusk (22%). Estimates over the past decades indicate that around 199470 ha of land is used for aquaculture farming. Out of the total area, 61% is used for freshwater farms, and 39% is used for coastal farms. However, this industry has contributed to environmental degradation, such as habitat destruction, water pollution, and ecological effects. Effective management strategies are urgently needed to minimize the environmental impacts of aquaculture and to ensure it maximally contributes to planetary health. Innovative and practical solutions that rely on diverse technology inputs and smart market-based management approaches that are designed for environmentally friendly aquaculture farming can be the basis for viable long-term solutions for the future

    Pre-1900 utopian visions of the ‘cashless society’

    Get PDF
    This article looks in more depth at the different ways in which ideas about cashless societies were articulated and explored in pre-1900 utopian literature. Taking examples from the works of key writers such as Thomas More, Robert Owen, William Morris and Edward Bellamy, it discusses the different ways in which the problems associated with conventional notes-and-coins monetary systems were tackled as well as looking at the proposals for alternative payment systems to take their place. Ultimately, what it shows is that although the desire to dispense with cash and find a more efficient and less-exploitable payment system is certainly nothing new, the practical problems associated with actually implementing such a system remain hugely challenging. This paper was written for the Cashless Society Project, an interdisciplinary and international effort to add some historical and analytical perspectives to discussions about the future of money, banking and payments. For more information, see http://cashlesssociety.wordpress.com/

    Statistically-Based Comparison of the Removal Efficiencies and Resilience Capacities between Conventional and Natural Wastewater Treatment Systems: A Peak Load Scenario

    Get PDF
    Emerging global threats, such as climate change, urbanization and water depletion, are driving forces for finding a feasible substitute for low cost-effective conventional activated sludge (AS) technology. On the other hand, given their low cost and easy operation, nature-based systems such as constructed wetlands (CWs) and waste stabilization ponds (WSPs) appear to be viable options. To examine these systems, a 210-day experiment with 31 days of peak load scenario was performed. Particularly, we conducted a deliberate strategy of experimentation, which includes applying a preliminary study, preliminary models, hypothetical tests and power analysis to compare their removal efficiencies and resilience capacities. In contrast to comparable high removal efficiencies of organic matter-around 90%-both natural systems showed moderate nutrient removal efficiencies, which inferred the necessity for further treatment to ensure their compliance with environmental standards. During the peak period, the pond treatment systems appeared to be the most robust as they indicated a higher strength to withstanding the organic matter and nitrogen shock load and were able to recover within a short period. However, high demand of land-2.5 times larger than that of AS-is a major concern of the applicability of WSPs despite their lower operation and maintenance (O&M) costs. It is also worth noting that initial efforts on systematic experimentation appeared to have an essential impact on ensuring statistically and practically meaningful results in this comparison study

    A practical protocol for the experimental design of comparative studies on water treatment

    Get PDF
    The design and execution of effective and informative experiments in comparative studies on water treatment is challenging due to their complexity and multidisciplinarity. Often, environmental engineers and researchers carefully set up their experiments based on literature information, available equipment and time, analytical methods and experimental operations. However, because of time constraints but mainly missing insight, they overlook the value of preliminary experiments, as well as statistical and modeling techniques in experimental design. In this paper, the crucial roles of these overlooked techniques are highlighted in a practical protocol with a focus on comparative studies on water treatment optimization. By integrating a detailed experimental design, lab experiment execution, and advanced data analysis, more relevant conclusions and recommendations are likely to be delivered, hence, we can maximize the outputs of these precious and numerous experiments. The protocol underlines the crucial role of three key steps, including preliminary study, predictive modeling, and statistical analysis, which are strongly recommended to avoid suboptimal designs and even the failure of experiments, leading to wasted resources and disappointing results. The applicability and relevance of this protocol is demonstrated in a case study comparing the performance of conventional activated sludge and waste stabilization ponds in a shock load scenario. From that, it is advised that in the experimental design, the aim is to make best possible use of the statistical and modeling tools but not lose sight of a scientific understanding of the water treatment processes and practical feasibility
    • …
    corecore